Predictions of Septic Effluent Transport to Charlotte Harbor Pre- and Post-Septic to Sewer Conversion for the Ackerman Subdivision

Donald M. "Matt" Reeves (matt.reeves@wmich.edu) Tanten Buszka

Board of County Commissioners Port Charlotte, Florida November 19, 2019

Project Overview

- Objective: Predict the fate and transport of septic effluent from Ackerman subdivision, pre- and post-septic to sewer conversion.
- This involves the development of a numerical groundwater flow and nitrogen transport model of the Ackerman subdivision.
- The numerical model is based on and supported by data collected from a groundwater characterization and tracer study at El Jobean.

Study Site

Model Domain

3D Model Domain

MODFLOW – USGS Modular Groundwater Flow Code MODPATH – Traces Flow Pathlines MT3DMS – Nitrogen (as nitrate) Transport

Visual MODFLOW Interface

Supporting Data – El Jobean Site

Subsurface Geology – medium sand, underlain by clay Hydraulic Conductivity/Permeability Hydraulic Gradient (slope of water table) Velocity and Plume Spreading Seasonal Water Table Fluctuations

Supporting Data – Other

- Digital Elevation Map (DEM) from USGS National Map to assign land surface elevations
- Net recharge to the water table: ppt ET from Southwest Florida Water Management District from 1994 – 2005 (7 in/yr average)
- Charlotte County Utilities Department (CCUD) shape file for canal configuration within model domain, water levels in Ackerman area
- CCUD shape files to delineate Ackerman into 5 distinct zones for simulation of septic fluid and nitrogen
- Septic fluid and nitrogen mass loading for septic systems according to Lift Station 23 O'Hara data from CCUD

Model Domain and Canal System

Boundary conditions allow for flow to exit along canals bounding model domain, set to sea level.

Water Levels - CCUD

Flow Model Results

Water Table Profile – Base Case Model

MODPATH – Pathlines (Upper Line Source)

MODPATH – Pathlines (Ackerman Line Sources)

Ackerman Zones – Septic Loading

Each zone is applied a water and nitrogen flux based on the number of active lots (septic)

Nitrogen Transport Model Results

Note focused transport through canal system

Summary and Conclusions

- All scenarios show that sewer conversion will have significant reductions in Nitrogen to the harbor – modeling results indicate that a 50% reduction in nitrogen mass within the ground water will occur in 2-5 years.
- Residual nitrogen will likely stay in the aquifer at least on the scale of a decade, if not longer.

Additional Work and Model Limitations

- The modeling results are preliminary.
- Collection of water levels within model domain will likely influence some of the model parameters and upper boundary, that can, in turn, modify the time scales of the results presented.
- Nitrogen speciation and transport is quite complex, the model assumes all nitrogen is nitrate that undergoes no natural attenuation.